A Bayesian Framework for Tilt Perception and Confidence

نویسندگان

  • Odelia Schwartz
  • Terrence J. Sejnowski
  • Peter Dayan
چکیده

The misjudgement of tilt in images lies at the heart of entertaining visual illusions and rigorous perceptual psychophysics. A wealth of findings has attracted many mechanistic models, but few clear computational principles. We adopt a Bayesian approach to perceptual tilt estimation, showing how a smoothness prior offers a powerful way of addressing much confusing data. In particular, we faithfully model recent results showing that confidence in estimation can be systematically affected by the same aspects of images that affect bias. Confidence is central to Bayesian modeling approaches, and is applicable in many other perceptual domains. Perceptual anomalies and illusions, such as the misjudgements of motion and tilt evident in so many psychophysical experiments, have intrigued researchers for decades.1–3 A Bayesian view4–8 has been particularly influential in models of motion processing, treating such anomalies as the normative product of prior information (often statistically codifying Gestalt laws) with likelihood information from the actual scenes presented. Here, we expand the range of statistically normative accounts to tilt estimation, for which there are classes of results (on estimation confidence) that are so far not available for motion. The tilt illusion arises when the perceived tilt of a center target is misjudged (ie bias) in the presence of flankers. Another phenomenon, called Crowding, refers to a loss in the confidence (ie sensitivity) of perceived target tilt in the presence of flankers. Attempts have been made to formalize these phenomena quantitatively. Crowding has been modeled as compulsory feature pooling (ie averaging of orientations), ignoring spatial positions.9, 10 The tilt illusion has been explained by lateral interactions11, 12 in populations of orientationtuned units; and by calibration.13 However, most models of this form cannot explain a number of crucial aspects of the data. First, the geometry of the positional arrangement of the stimuli affects attraction versus repulsion in bias, as emphasized by Kapadia et al14 (figure 1A), and others.15, 16 Second, Solomon et al. recently measured bias and sensitivity simultaneously.11 The rich and surprising range of sensitivities, far from flat as a function of flanker angles (figure 1B), are outside the reach of standard models. Moreover, current explanations do not offer a computational account of tilt perception as the outcome of a normative inference process. Here, we demonstrate that a Bayesian framework for orientation estimation, with a prior favoring smoothness, can naturally explain a range of seemingly puzzling tilt data. We explicitly consider both the geometry of the stimuli, and the issue of confidence in the esti-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

Process Improvement of Experimental Measurements Using D-optimal Models

In this paper, the application of D-optimal models, as an alternative to response surface models (RS models) for design of experiment (DOE) was examined. Two D-optimal models for tilt-rotors in the wind tunnel experiment, as a form of quadratic functions, were generated based on a chosen optimality criterion. This optimality criterion was used to generate the optimized sampled points in the des...

متن کامل

Inverse Problems in Imaging Systems and the General Bayesian Inversion Frawework

In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...

متن کامل

Upright Perception and Ocular Torsion Change Independently during Head Tilt

We maintain a stable perception of the visual world despite continuous movements of our eyes, head and body. Perception of upright is a key aspect of such orientation constancy. Here we investigated whether changes in upright perception during sustained head tilt were related to simultaneous changes in torsional position of the eyes. We used a subjective visual vertical (SVV) task, modified to ...

متن کامل

How do visual and postural cues combine for self-tilt perception during slow pitch rotations?

Self-orientation perception relies on the integration of multiple sensory inputs which convey spatially-related visual and postural cues. In the present study, an experimental set-up was used to tilt the body and/or the visual scene to investigate how these postural and visual cues are integrated for self-tilt perception (the subjective sensation of being tilted). Participants were required to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005